Disulfide Bonding Pattern Prediction Using Support Vector Machine with Parameters Tuned by Multiple Trajectory Search
نویسندگان
چکیده
The prediction of the location of disulfide bridges helps towards the solution of protein folding problem. Most of previous works on disulfide connectivity pattern prediction use the prior knowledge of the bonding state of cysteines. In this study an effective method is proposed to predict disulfide connectivity pattern without the prior knowledge of cysteins’bonding state. In previous research works reported in the literature, to the best of our knowledge, without the prior knowledge of the bonding state of cysteines, the best accuracy rate for the prediction of the overall disulfide connectivity pattern (Qp) and that of disulfide bridge prediction(Qc) are 48% and 51% respectively for the dataset SPX. This study uses the cystein position difference, the cystein index difference, the predicted secondary structure of protein and the PSSM score as the features. The support vector machine (SVM) is trained to compute the connectivity probabilities of cysteine pairs. An evolutionary algorithm called the multiple trajectory search (MTS) is integrated with the SVM training to tune the parameters for the SVM and the window sizes for the predicted secondary structure and the PSSM. The maximum weight perfect matching algorithm is then used to find the disulfide connectivity pattern. Testing our method on the same dataset SPX, the accuracy rates are 52.8% and 58.1% for disulfide connectivity pattern prediction and disulfide bridge prediction when the bonding state of cysteines is not known in advance. Key-Words: disulfide bonding pattern, disulfide bonding state, SVM, multiple trajectory search, metaheuristics
منابع مشابه
Prediction of Disulfide Bonding Pattern Based on Support Vector Machine with Parameters Tuned by Multiple Trajectory Search
The prediction of the location of disulfide bridges helps solving the protein folding problem. Most of previous works on disulfide connectivity pattern prediction use the prior knowledge of the bonding state of cysteines. In this study an effective method is proposed to predict disulfide connectivity pattern without the prior knowledge of cysteins’bonding state. To the best of our knowledge, wi...
متن کاملPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
متن کاملOnline Voltage Stability Monitoring and Prediction by Using Support Vector Machine Considering Overcurrent Protection for Transmission Lines
In this paper, a novel method is proposed to monitor the power system voltage stability using Support Vector Machine (SVM) by implementing real-time data received from the Wide Area Measurement System (WAMS). In this study, the effects of the protection schemes on the voltage magnitude of the buses are considered while they have not been investigated in previous researches. Considering overcurr...
متن کاملQSAR Prediction of Half-Life, Nondimentional Eeffective Degradation Rate Constant and Effective Péclet Number of Volatile Organic Compounds
In this work some quantitative structure activity relationship models were developed for prediction of three bioenvironmental parameters of 28 volatile organic compounds, which are used in assessing the behavior of pollutants in soil. These parameters are; half-life, non dimensional effective degradation rate constant and effective Péclet number in two type of soil. The most effective descripto...
متن کاملPredicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure
MOTIVATION Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop...
متن کامل